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Motivation

[Barwise, 1979]

The richer the country the more powerful are some of its officials.

Thesis ([Barwise, 1979])

Logical form of such sentences is best captured in SO.

Theorem ([Barwise, 1979])

Homomorphism is not FO-expressible over arbitrary models.



Overview of the Present Work

1. other notions of similarity between partial orders

2. restr. to finite models [Westerst̊ahl, 1984, Szymanik, 2016]

3. generalized quantifiers theory → similarity quantifiers

4. expressiveness → extension to Barwise’s results

5. complexity of s.q. → not explored previously
[Mostowski and Wojtyniak, 2004, Szymanik, 2010]



Similarity Quantifiers

I Relational vocabulary σ = (A, <A,B, <B)

I (A, <A), (B, <B) - finite strict partial orders

Figure 1: Double partial order



Similarity Quantifiers

Homomorphism, H

∃ f : A→ B ∀ x , y ∈ A [(x <A y ⇒ f (x) <B f (y))]

1-1 Homomorphism, H1−1

∃ f : A
1−1→ B ∀ x , y ∈ A ((x <A y ⇒ f (x) <B f (y))

Embedding, E

∃ f : A
1–1→ B ∀ x , y ∈ A ((x <A y ⇔ f (x) <B f (y))



Similarity Quantifiers

I Relational vocabulary σR = (A, <A,B, <B ,R)

I coupling relation R ⊆ A× B

Figure 2: Coupled partial order

Ra := {b ∈ B : R(a, b)}

I requirement for similarity function f : ∀ a ∈ A f (a) ∈ Ra.



Similarity Quantifiers (Restricted Versions)

Restricted Homomorphism, Hr

∃ f : A→ B ∀ x , y ∈ A [ R(x , f (x)) ∧ (x <A y ⇒ f (x) <B f (y))]

Restricted 1-1 Homomorphism, H1−1
r

∃ f : A
1−1→ B ∀ x , y ∈ A ( R(x , f (x)) ∧ (x <A y ⇒ f (x) <B f (y))

Restricted Embedding, Er

∃ f : A
1–1→ B ∀ x , y ∈ A ( R(x , f (x)) ∧ (x <A y ⇔ f (x) <B f (y))



Similarity Quantifiers

Disjointness of {Ra}a∈A
Ra ∩ Rb = ∅, for every a, b ∈ A such that a 6= b (FO-sentence)

⇓ add this condition ⇓

Hrd ,H1–1
rd , Erd



Indefinability of Similarity Quantifiers in Finite Models

Barwise [Barwise, 1979] proved that that homomorphism between
partial orders is not FO-expressible over arbitrary models.
What we prove is

Theorem
H,H1−1, E are not FO-definable over double partial orders.

Proof.
If H,H1−1 or E is FO-expressible over double partial orders then
parity is expressible over linear orders, a contradiction.



Indefinability

Theorem
Hr , H1–1

r , Er , Hrd , Erd are not FO-definable over coupled partial
orders.

The proof is by Hanf-locality argument.



Complexity

I What is the computational complexity of similarity quantifiers?

I relevance of complexity measures for cognition
[Szymanik, 2016]

I how hard it is to use such constructions?

verify them against finite situations

Analogous questions explored wrt different constructions
[Mostowski and Wojtyniak, 2004, Sevenster, 2006a,
Szymanik, 2010]



Complexity

Definition
Let A = (A, <A) be a finite strict partial order. The height of A,
denoted by h(A), is the number of vertices in the longest chain in
A.

Lemma
h is in P.

Proof.
The argument uses the Sedgewick trick
[Sedgewick and Wayne, 2011] for finding the longest paths in a
directed graph with the help of the Ford-Bellman algorithm



Complexity

Lemma
Let A, B be strict posets. There is a homomorphism from A to B
iff h(A) ≤ h(B).

Theorem
H is in P.

Proof.
Corollary from the Lemmata.



Complexity

Theorem
Hr , Hrd , H1–1, H1–1

r , E , Er , Erd are NP-complete.

Proof.
Each of those quantifiers is definable by existential SO-sentences.
Hence, by the Fagin theorem [Fagin, 1974a], they are in NP.
To prove that they are NP-hard, we show 3SAT is polynomially
reducible to each of those quantifiers.



Conclusions

I in view of Ristad’s thesis
[Ristad, 1993, Mostowski and Szymanik, 2012], similarity
quantifiers are among the strongest properties expressible in
everyday language

I similarity quantifiers (except for raw homomorphism) are thus
among the hardest everyday language concepts (see, e.g.,
[Mostowski and Wojtyniak, 2004, Szymanik, 2010])

I unrestricted homomorphism is practically verifiable

I further linguistic implications are developed in
[Kalociński and Godziszewski, 2018]

General Question
What are the properties of logics with similarity quantifiers?



Thank you for your attention!
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