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Abstract
We consider the problem of learning the meaning of natural language expressions. In contrast to traditional set-

tings, in which agents infer prescribed meanings from observations, we focus on an algorithm for the coordination
of meaning among many agents. We do not assume any external correctness criterion. Similar research on colour
categorization can be found in [4]. We propose an agent-based iterative algorithm for coordinating the semantics
of upward monotone proportional quantifiers. We consider coordination for two agents. We define three models: a
simple one, one with authority parameter, and one combining authorities and more complex conversation patterns.
We represent the models in terms of Markov chains and study the influence of authorities and conversation patterns
on coordination. We observe a mathematical connection between the possibility of convergence and specific levels
of agents authority and complexity of communication patterns. We mention the possibility of extending the model
to cover the parameter of spatial separation.

Introduction
We restrict to upward monotone proportional quantifiers of type (1). Natural language quanti-
fier interpretable in this way is Most. We identify the meaning of a quantified sentence with
algorithm for checking the sentence truth value in finite models. Reduced fractions from [0, 1]
(Farey fractions) serve as rough approximations of meanings of such quantifiers. For a quan-
tifier expression Q with meaning p/q, a finite model (U,R) with U 6= ∅ and R ⊆ U :
the sentence QxR(x) is true in (U,R) iff |R|/|U | > p/q. The only information necessary to calcu-
late the truth value is the proportion |R|/|U |. Thus, we identify relevant finite models with rational
numbers from [0, 1].

We model the coordination of meaning of a quantifier expression Q via communication. We think
of agents as equipped with simple linguistic constructions, relevant for uttering sentences of the form
QxR(x).

Figure 1: Markov chain for Model IIA, authorities w1 > w2, H = {0, 12, 1} and X ∼ B(50, 0.5).

Model Parameters
n — number of agents, A = {1, 2, . . . , n} is referred to as the population.
k — H = Fk is the space of hypotheses. Fk denotes the set of irreducible fractions between 0 and 1

(inclusively) whose denominators do not exceed k.
X — a random variable with an associate probability function P . X assumes values in [0, 1] and

approximates the contexts (environments) in which agents communicate. Random deviates of X
are to be interpreted as proportions |R|/|U |.

Coordination Process
Agents are equipped with semantics s : A → H . Each agent knows his semantics, not semantics of
others. Coordination evolves in discrete steps. Each step comprises of two stages: communication
and adjustment. During communication each agent gets to know how some of the other agents
evaluate quantified sentences in some situations. During adjustment each agent tries to change his
current semantics so as to maximize communicative success in a situation encountered in the com-
munication stage. After that s gets updated and we get back to communication and adjustment stage
once again, and so on.

Communication Conversation patterns for the present stage are generated. A conversation pattern
consists of two agents a, b and a topic r ∈ [0, 1]. Agents communicate according to the generated
patterns. In a conversation (a, b, r), a communicates to b the truth value of ‘r > s(a)’ and b does the
same towards a with ‘r > s(b)’. We say a conversation (a, b, r) is successful, if the communicated
truth values are equal.

Adjustment An agent-based coordination mechanism is performed simultaneously by all agents.
The goal of each agent a ∈ A is to become more successful in situations as the one encountered in
the communication stage. Success of an agent in a given situation is measured by the the number of
successful conversations he participated in. The idea of coordination is as follows: choose at random
the simplest semantic hypothesis from those which guarantee maximal success in a given situation.
Simplicity is understood as possessing small denominator. The simplicity criterion is introduced to
mimic our natural preference for simple solutions.

Algorithm 1 Agent-based coordination mechanism
Agent: current hypothesis h0 ∈ H
Input: b1b2 . . . bm – complete list of interlocutors from communication stage

r1r2 . . . rm – corresponding topics of conversations
Output: (possibly new) hypothesis from H

1: for all h ∈ H do . each h is assigned a score
2: z1z2 . . . zm := a binary vector, where zi = 1, if ri > s(bi)⇔ ri > h, and zi = 0 otherwise

3: score(h) :=

{
Σm
i=1(zi) + 1 if h0 = h

Σm
i=1(zi) otherwise

4: end for
5: M := {h ∈ H : ∀h′ score(h) ≥ score(h′)}
6: return random element from S(M) . M ⊇ S(M) = fractions with the smallest denominators

Model I

Fix the parameters, n = 2. At each stage, agents perform one conversation on a single topic. We
represent Model I by the Markov chain on S = Fk × Fk. A state s = s1s2 ∈ S refers to the situation
in which agents 1 and 2 understand Q as s1 and s2, respectively. For any s, s′ ∈ S, the transition
probability pss′ describes chances that a population changes its semantics from s to s′ during one
stage of coordination.

Figure 2: Markov chain for Model I, H = {0, 12, 1} and X ∼ B(50, 0.5).

By the Markov representation, we observe that only the existential quantifier or the trivial (always
false) quantifier more than everything may emerge, unless initial semantics is a constant function
s : A→ {u}, for some u ∈ H , 0 < u < 1. This observation is not favourable for Model I, as it does
not explain how more complex semantics could emerge.

Model IIA: Authorities

Model IIA has one new parameter—authority function w : A → R+. We only modify the scoring
procedure. Let us take a ∈ A, and let w0 be a’s authority and w1w2 . . . wm authorities of a’s inter-
locutors. We set score(h) = Σm

i=1(zi ·wi). Additionally, if h is the same as a’s current hypothesis, we
add w0 to the final score of h.

For a constant non-zero authority function, Model IIA resolves into Model I. However, differenti-
ated authorities facilitate coordination. Consider authorities w1 > w2 (see Fig. 1). It is more probable
in Model IIA than in Model I to change from 01 to 00. Moreover, we cannot have the following
cycles: 01, 10, 01, 10, . . ., while they may occur in Model I. In Model IIA, if an agent with the greatest
authority starts with 0, then we cannot stabilize on anything else than 00 (similarly for 1). In Model I,
it does not matter whether agent starts with 0 or 1—she can always change to 0 or 1. If an agent with
the greatest authority starts with something other than 0 and 1, then the semantics diverge forever.
This effect is partially due to the simplicity criterion that tells agents to choose among the simplest
hypotheses, but another reason for this is a very low complexity of communication patterns.

Model IIB: Multiple Topics

In Model IIB communication patterns are more complex. At each stage, two topics are generated and
each agent communicates with every other agent about the two topics. We observe that an agent may
choose more complex semantics only if her interlocutor possesses complex semantics and has greater
authority. Most is achievable in such a model.

Figure 3: Markov chain for Model IIB, authorities w1 > w2, H = {0, 12, 1} and X ∼ B(50, 0.5).

We hypothesize that if the topics of real-life conversations obey a rule similar to normal distribution,
then our coordination model explains why the quantifier Most emerged in natural language.

Conclusions
It turns out that authority functions significantly affect the behaviour of the population. Differentiated
authority functions are propitious for coordination and the quality of communication, whereas equal-
ity among agents makes the coordination more difficult and the communication less successful. This
observation extends to larger populations. Moreover, higher complexity of communication patterns
may lead to the emergence of more complex semantics.

Forthcoming Research
The authority has less impact on others when communication is less frequent. Empirical experiments
reveal a strong negative correlation between the physical distance and the frequency of communica-
tion (viz. Allen’s Curve, [1]). The next step of this research is to take into account larger populations
and to account for the distance factor.
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