
On Computability and Learnability of the
Pumping Lemma Function∗

Dariusz Kalociński†

March 2014

Abstract

On the basis of the well known pumping lemma for regular languages
we define such a partial function f : N→ N that for every e it yields
the least pumping constant for the language We. We ask whether f
is computable. Not surprisingly f turns out to be non-computable.
Then we check whether f is algorithmically learnable. This is also
proved not to be the case. Further we investigate how powerful oracle
is necessary to actually learn f . We prove that f is learnable in 0′. We
also prove some facts relating f to arithmetical hierarchy.

Keywords: pumping lemma, computability, algorithmic learning,
arithmetical hierarchy, reducibility

1 The Pumping Lemma Function

From automata theory one knows the pumping lemma for regular languages
[4]. Before we formulate the lemma, let us fix some terminology. Let We

denote the domain of the partial function computed by the Turing machine

∗This is a draft of: D. Kalociński. On Computability and Learnability of the Pumping
Lemma Function. In Adrian-Horia Dediu, Carlos Mart́ın-Vide, José-Luis Sierra-Rodŕıguez,
and Bianca Truthe, editors, Language and Automata Theory and Applications, volume 8370
of Lecture Notes in Computer Science, pages 433-440. Springer International Publishing,
2014.
†The author is a PhD student at the Department of Logic, Institute of Philosophy,

University of Warsaw, Poland.

1

with Gödel number e. By R(e, c) we understand the following statement: for
each word ω ∈ We, if |ω| > c, then there are words α,β, γ such that ω = αβγ,
β 6= ε, |αβ| ≤ c and for all i ∈ N αβiγ ∈ We . We may now formulate the
pumping lemma for regular languages easily: for each e such that We is a
regular language there is a positive integer c such that R(e, c). On the basis
of this familiar result, one can define a partial function f : N → N (here
called the pumping lemma function) such that for each e ∈ N yields the
least c such that R(e, c), if any such c exists, and otherwise is undefined. A
natural question arises: is f computable? The solution to this question is
negative. Another problem which arises is as follows: is the complement of
the graph of f recursively enumerable? This is also proved not to be the
case. Further we investigate algorithmic learnability of f . We prove that f is
not algorithmically learnable. Then we ask how powerful oracle is necessary
to actually learn f . We prove that f is algorithmically learnable with the
halting problem in oracle. We finish the article by relating f to arithmetical
hierarchy.

2 Terminology and Notation

In this section we provide terminology and notation used throughout the
article. Notions used locally are defined when they are needed. For further
details on computability consult [1, 6].

In Sect. 1 we have already introduced some notation, namely We and
R(e, c). Sometimes we use R for the binary relation expressed by the formula
R(e, c). The appropriate meaning of R shall be clear from the context. By
Gh we denote the graph of the (possibly partial) function h. The operation of
taking the complement of a relation S ⊆ Nk is defined as follows: S ′ = Nk−S.
Inputs of algorithms are words or numbers. We can assume that algorithms
are Turing machines that work with words over binary alphabet. Binary
words are easily coded as numbers. We do not make any explicit distinction
between numeric inputs and string inputs - a particular usage will be clear
from context. The length of the word x is denoted by lh(x) or |x|. By ≤bl
we denote bounded lexicographical order on strings. Let x, y be words. We
say x is less or equal to y with respect to bounded lexicographical order (in
symbols x ≤bl y), if |x| < |y| or both |x| = |y| and x is lexicographically less
or equal to y. The characteristic function of the set A ⊆ N is denoted by cA.
By coding of pairs we mean some fixed reasonable coding, for example Cantor

2

pairing function. By πi, i = 1, 2, we mean the canonical projection of a pair
on thie i-th coordinate. The symbol ≤m refers to the relation of many-one
reducibility. We write h : A ≤m B to express the fact that h is total recursive
and x ∈ A ⇔ h(x) ∈ B, for all x ∈ N. We use T (e, x, c) for the Kleene
predicate, where e is a Gödel number of a Turing machine, x stands for an
input and c for a computation. U(c) refers to the output of a computation c.
By EMPTY we denote the emptiness problem, i.e the set {e ∈ N : We = ∅}.
NOTEMPTY stands for the non-emptiness problem, i.e. the set N− EMPTY.
TOT denotes the totality problem, i.e. {e : ∀x∃ c T (e, x, c)}. The halting
problem {(e, x) ∈ N2 : ∃ c T (e, x, c)} is denoted by HALT. We use the standard
notation Σ0

k, Π0
k, ∆0

k for the classes of sets in arithmetical hierarchy.

3 Non-computability Results

Lemma 1. EMPTY ≤m R.

Proof. We define the function r(e) = (σ(e), 1), where σ is the total computable
function obtained through smn theorem from g(e, x) which is computed as
follows: We examine whether We is empty. If it is empty, the computation
goes on forever; otherwise emptiness checking procedure stops. In that case
we measure the length of x and if it is even we return 1. Otherwise we loop
forever.

Therefore if We = ∅, then Wσ(e) = ∅ and (σ(e), 1) ∈ R. If We 6= ∅ then
Wσ(e) contains all words of even length. In this case clearly (σ(e), 1) /∈ R
(otherwise We would have contained words of odd length).

Lemma 2. If R(e, c) then (∀ d > c)R(e, d).

Proof. Directly from the definition of R(e, c).

Theorem 1. f is not computable.

Proof. Suppose for the sake of contradiction that f is computable. Then
of course R is recursively enumerable, that is Σ0

1 (use the fact that the
graph of recursive function is r.e. and, bearing in mind the Lemma 2, devise
an algorithm for enumerating R). Taking into account that EMPTY is Π0

1-
complete, we have A ≤m EMPTY ≤m R ∈ Σ0

1 for all A ∈ Π0
1. It follows that

Π0
1 ⊆ Σ0

1, which is impossible, because it is well known that Π0
1 −Σ0

1 6= ∅.

Lemma 3. NOTEMPTY ≤m R.

3

Proof. We define the function r(e) = (σ(e), 1), where σ is the total computable
function obtained through smn theorem from g(e, x) which is computed as
follows. If the length of x is even, then stop. Otherwise start checking,
whether We 6= ∅. If We 6= ∅ then - when a word α is found such that α ∈ We

- stop. Otherwise (if We = ∅) we loop forever.
Therefore if We = ∅ then Wσ(e) contains all words of even length, so

(σ(e), 1) /∈ R. If We 6= ∅, then Wσ(e) contains all words and (σ(e), 1) ∈ R.

Lemma 4. If G′f is r.e., then R′ is r.e.

Proof. Let p : N2 → N be the recursive partial characteristic function of G′f ,
i.e.

p(x, y) =

{
1 if (x, y) /∈ Gf

undefined otherwise
. (1)

We define h : N2 → N - the recursive partial characteristic function of R′:

h(x, y) = Πy
i=0p(x, i) . (2)

Assume (x, y) ∈ R′. Then it must be the case that (∀ i ≤ y) (x, i) ∈ R′.
Therefore (∀ i ≤ y) (x, i) /∈ Gf and thus (∀ i ≤ y) p(x, i) = 1.

Now assume (x, y) /∈ R′. Then (x, y) ∈ R. So it must be the case that
f(x) ≤ y. Therefore Πy

i=0p(x, i) is undefined, since p(x, f(x)) is undefined
and 0 ≤ f(x) ≤ y.

Theorem 2. G′f is not r.e.

Proof. Suppose on the contrary that G′f is r.e. Then by Lemma 4 R′ is r.e.
We use the following fact from recursion theory: A ≤m B ⇔ A′ ≤m B′.
We apply it to NOTEMPTY ≤m R and obtain EMPTY ≤m R′. Then the
reasoning is analogous to the proof the Theorem 1.

4 Non-learnability Result

We established some lower bounds on the complexity of the pumping lemma
function: we know that f is not recursive and that G′f is not r.e. In this
section we show that f is not algorithmically learnable which means that Gf

is not Σ0
2.

4

Definition 1. Let f : Nk → N be a (possibly partial) function. We say that f
is algorithmically learnable (shortly: learnable) if there is a total computable
function gt(x)1 such that for all x ∈ Nk:

limt→∞gt(x) = f(x) , (3)

which means that neither f(x) nor limt→∞gt(x) exist or - alternatively - both
f(x) and limt→∞gt(x) exist and are equal.

The following lemma is a familiar result from the algorithmic learning
theory. Classical papers related to the subject are [2, 3, 5].

Lemma 5. Let f : Nk → N. f is learnable if and only if Gf is Σ0
2.

Proof. (⇒) Let f be learnable and gt(x) be total computable function satis-
fying the Equation (3). We observe that Gf(x, y)⇔ (∃ t ∈ N)(∀ k > t) y =
gk(x). The formula y = gk(x) defines a recursive ternary relation, because g
is total computable.

(⇐) Let f be such that Gf is Σ0
2. Choose a recursive relation A ⊆ Nk+3

such that Gf(x, y) ⇔ ∃z∀wA(x, y, z, w). We define an infinite procedure
G(x) (Alg. 1) that is easily convertible to the appropriate definition of total
computable learning function gt(x) satisfying Equation 3.

The procedure simply searches for y satisfying ∃z∀wA(x, y, z, w) by enu-
merating all possible pairs (y, z). If there is such y, the procedure will finally
spot it together with the relevant witness z. Therefore f(x) will be finally
stored in the variable y and from that point the contents of y will never
change. On the other hand, if there is no such y, the contents of the variable
y will continue to change ad infinitum.

Lemma 6. TOT ≤m R.

Proof. Let H(x,m, t) mean (∃ c < t)T (x,m, c). Define a relation S(x, y):

S(x, y)⇔df 2 | lh(y) ∨ (∃ t)(∀m ≤bl y)H(x,m, t) . (4)

Of course, S is r.e. By pS(x, y) we denote recursive partial characteristic
function of S. By smn theorem, there is a total computable function σ such
that {σ(x)}(y) ' pS(x, y), where {·} refers to the function computed by

1Expression gt(x) shall be read as g(t, x). In precise terms, gt(x) stands for a sequence
of functions. We use indexed t to distinguish the discrete time parameter from the input.

5

Data: x
Result: y contains hypothesized value f(x)
p, w, y, z ← 0;
while true do

y ← π1(p);
z ← π2(p);
if cA(x, y, z, w) = 1 then

w ← w + 1;
else

p← p+ 1;
w ← 0;

end

end
Algorithm 1: The infinite procedure G(x).

Turing machine having Gödel number ·. Define r(x) =df (σ(x), 1). We prove
that r : TOT ≤m R.

(⇒) Let x′ ∈ TOT. We begin by showing that S(x′, y) holds for all
y. Fix y′. If 2 | lh(y′), then obviously S(x′, y′). Assume that 2 - lh(y′).
Because x′ ∈ TOT, we choose a finite sequence of numbers (tω)ω≤bly

′ such

that H(x′, ω, tω) holds for ω ≤bl y
′. Let T = max{tω : ω ≤bl y

′}. Then we
have (∀ω ≤bl y

′)H(x′, ω, T), and - what follows - (∃ t)(∀ω ≤bl y
′)H(x′, ω, t).

Therefore S(x′, y′).
The following are equivalent:
(∀ y)S(x′, y),
(∀ y) pS(x′, y) = 1,
(∀ y) {σ(x′)}(y) = 1,
σ(x′) ∈ TOT.
It remains to show that r(x′) = (σ(x′), 1) ∈ R, which is trivially true.
(⇐) Let x′ /∈ TOT. Choose y0 to be the smallest word with respect to

≤bl such that ¬(∃ c)T (x′, y0, c). Observe that (∀ y) [y0 ≤bl y ∧ 2 - lh(y)⇒
¬S(x′, y)]. For let y0 ≤bl y, 2 - lh(y) and suppose S(x′, y). It follows, that
(∃ t)H(x′, y0, t) which is a contradiction.

Let k be any number satisfying lh(y0) < 2k. Observe that 12k ∈ Wσ(x′),
because 2 | lh(12k). The only possible division of 12k into αβγ satisfying
conditions lh(αβ) ≤ 1, β 6= ε is α = ε, β = 1, γ = 12k−1. Consider
αβ0γ = 12k−1. Clearly y0 ≤bl 12k−1. Therefore ¬S(x′, 12k−1) and thus

6

12k−1 /∈ Wσ(x′). We may then conclude that r(x′) = (σ(x′), 1) /∈ R.

We are ready to prove the main non-learnability theorem.

Theorem 3. f is not learnable.

Proof. Suppose for the sake of contradiction that f is learnable. By the
Lemma 5, Gf is Σ0

2. R can be defined as follows: R(x, y)⇔ ∃c(Gf (x, c) ∧ c ≤
y). The right side of the equivalence is easily convertible to a Σ0

2-formula.
Thus R is Σ0

2. Due to the Lemma 6, TOT is Σ0
2. However, TOT is not Σ0

2.
Contradiction.

5 Learnability Result

So far we have proved only negative results concerning computability or
learnability of f . The question now rises how much we would need to
strengthen our computational capabilities to turn this task into something
learnable. In terms of recursion theory: how complex oracle we need to make
f learnable? In this section we prove that f is learnable in 0′.

Theorem 4. f is learnable in 0′.

Proof. We choose HALT = {(e, x) ∈ N2 : (∃ c)T (e, x, c)} for the oracle. By
φ(e, x) we denote the formula provided below. The formula φ(e, x) expresses
the fact that R(e, x):

x > 0 ∧ (∀ω) {
σ(x,e,ω)︷ ︸︸ ︷

[(e, ω) ∈ HALT ∧ lh(ω) ≥ x]⇒ (∃α, β, γ ≤bl ω)

[αβγ = ω ∧ lh(αβ) ≤ x ∧ β 6= ε︸ ︷︷ ︸
θ1(x,ω,α,β,γ)

∧ (∀ i) (e, αβiγ) ∈ HALT)︸ ︷︷ ︸
θ2(e,α,β,γ,i)

]} .
(5)

Observe that the relation {(x, ω, e, α, β, γ, i) : θ1 ∧ θ2} is recursive in HALT.
There is a relation η, recursive in HALT, such that (∃α, β, γ ≤bl ω)(∀ i) (θ1 ∧
θ2)⇔ (∀ j) η(x, e, ω, j).

The following are equivalent:
φ(e, x) ,
x > 0 ∧ (∀ω) {σ ⇒ (∃α, β, γ ≤bl ω)[θ1 ∧ (∀ i) θ2]} ,
(∀ω) {x > 0 ∧ [σ ⇒ (∃α, β, γ ≤bl ω)(∀ i) (θ1 ∧ θ2)]} ,
(∀ω) {x > 0 ∧ [σ ⇒ (∀ j) η]} ,

7

(∀ω) (∀ j) {(x > 0 ∧ (¬σ ∨ η)︸ ︷︷ ︸
ξ(x,e,ω,j)

} .

Thus, the relation defined by φ(e, x) is Π0
1 in HALT. Now we express the

fact that x is the least number such that φ(e, x):

φinf(e, x) := φ(e, x) ∧ (∀ y < x)¬(∀ω) (∀ j) ξ(e, x, ω, j) . (6)

The right conjunct of φinf is equivalent to a formula of the form (∃ z)ζ(e, x, z),
where ζ(e, x, z) is recursive in HALT. Therefore we have

φinf(e, x)⇔ (∀ω, j) ξ(e, x, ω, j) ∧ (∃ z)ζ(e, x, z) . (7)

This easily leads us - by familiar first-order transformations - to the Σ0
2

definition of the relation expressed by φinf(e, x), in terms of relations recursive
in HALT. Observe that the relation defined by φinf(e, x) is Gf . Thus, Gf

is Σ0
2 in HALT. By the relativized version of the Lemma 5 f is learnable in

HALT.

6 Supplement

We end the article by providing supplementary results relating f to arith-
metical hierarchy.

Theorem 5. R is Π0
2-complete.

Proof. We have already proved that TOT ≤m R (Lemma 6). It remains to
show that R is Π0

2. Consider the following definition of R:

x > 0 ∧ (∀ω) {[(∃ c)T (e, ω, c) ∧
σ(x,ω)︷ ︸︸ ︷

lh(ω) ≥ x]⇒ (∃α, β, γ ≤bl ω)

[αβγ = ω ∧ lh(αβ) ≤ x ∧ β 6= ε︸ ︷︷ ︸
θ(x,ω,α,β,γ)

∧ (∀ i) (∃ c)T (e, αβiγ, c)]}
(8)

Consider the implication enclosed in curly brackets:

((∃ c)T (e, ω, c) ∧ σ)⇒ (∃α, β, γ ≤bl ω)(θ ∧ (∀ i) (∃ c)T (e, αβiγ, c)) (9)

We proceed by equivalent reformulations of (9):
(∀ c) (¬T (e, ω, c) ∨ ¬σ) ∨ (∃α, β, γ ≤bl ω)(θ ∧ (∀ i) (∃ c)T (e, αβiγ, c)) ,

8

(∀ c) (¬T (e, ω, c) ∨ ¬σ) ∨ (∃α, β, γ ≤bl ω)(∀ i) (∃ d)(θ ∧ T (e, αβiγ, d)︸ ︷︷ ︸
ϕ

) ,

(∀ c) (¬T (e, ω, c) ∨ ¬σ) ∨ (∀ i) (∃ d)ψ(x, e, ω, i, d)︸ ︷︷ ︸
ϕ′

,

(∀ c) (∀ i) (∃ d)(¬T (e, ω, c) ∨ ¬σ ∨ ψ(x, e, ω, i, d)) .
Thus, (8) is equivalent to:

(∀ω) (∀ c) (∀ i) (∃ d)[x > 0 ∧ (¬T (e, ω, c) ∨ ¬σ ∨ ψ(x, e, ω, i, d))] . (10)

We have used familiar first order tautologies and the fact that bounded
quantifier prefix in ϕ can be somehow shifted inside, resulting in an equivalent
Π0

2-formula ϕ′ such that its subformula ψ expresses a recursive relation. The
above argument clearly shows that R is Π0

2.

Theorem 6. Gf is ∆0
3.

Proof. Let us denote by φ(e, x) the Π0
2-formula (10) defining R. As in the

proof of the Theorem 4 define Gf in the following way:

φ(e, x) ∧ (∀ y < x)¬φ(e, y) (11)

The formula (11) is equivalent to a formula of the form (∀∃ . . . ∧ ∃∀ . . .),
where . . . stand for some formulae expressing recursive relations. Proper shifts
of quantifiers lead us to Π0

3- and Σ0
3-formula defining Gf . This clearly shows

that Gf is ∆0
3.

7 Remarks about Practical Significance

We addressed the problem of determining the least constant from the pumping
lemma with a view to applying results to formal language learning framework.

One of the directions for further investigation can be as follows. Consider
the machine placed in an unknown environment. The environment presents
positive and negative examples of an unknown language L from an unknown
class. Note that the environment that exhaustively presents both positive and
negative examples can be viewed as an oracle for the input language L. Thus
the Theorem 4 may be applied, since in such an environment the machine is
equipped with an analogue of the halting problem and the only queries to
the halting problem that are important for determining the least constant
for L are of the form ,,α ∈ L?”. Suppose the machine is equipped with the

9

learning procedure for f as described above. The pumping lemma for regular
languages gives a necessary condition for a language to be regular. Let the
input language L = We, for some e. If ¬∃cR(e, c), then We is not regular and
the learning procedure for f diverges. This fact can be used as a heuristic and
the machine can hypothesize that the input language is not regular. On the
other hand, if ∃cR(e, c), then the learning procedure for f converges and the
machine can use this fact as a heuristic and conjecture that input language is
regular or at least exclude certain languages from consideration.

We can put further constraints on input languages to make the applications
more practical. Since for every regular language L there is a Turing machine
e that computes the characteristic function cL in linear time, we can restrain
the working time of input machine e by a suitable quadratic polynomial p,
with no worry of omitting any regular language. If the computation of e on
the input α does not stop after p(|α|) steps, the answer to ,,α ∈ We?” is
set to no. By including such time constraints, we in fact obtain the learning
algorithm of the pumping lemma function for languages decidable in quadratic
polynomial time. In this setting, the learning algorithm may be used as a
supplementary heuristic for hypothesizing whether input language is regular.

References

[1] N. Cutland. Computability, an Introduction to Recursive Function Theory.
Cambridge University Press, 1980.

[2] E. M. Gold. Limiting Recursion. J. Symbolic Logic, 30:28–48, 1965.

[3] E. M. Gold. Language Identification in the Limit. Information and
Control, 10:447–474, 1967.

[4] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, Cambridge, 1979.

[5] H. Putnam. Trial and Error Predicates and the Solution to a Problem of
Mostowski. J. Symbolic Logic, 30:49–57, 1965.

[6] J. R. Schoenfield. Recursion Theory, volume 1 of Lecture Notes in Logic.
Springer-Verlag, Berlin, 1993.

10

