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Abstract

We consider the notion of intuitive learnability and its relation to
intuitive computability. We briefly discuss the Church’s Thesis. We
formulate the Learnability Thesis. Further we analyse the proof of
the Church’s Thesis presented by M. Mostowski. We indicate which
assumptions of the Mostowski’s argument implicitly include that the
Church’s Thesis holds. The impossibility of this kind of argument is
strengthened by showing that the Learnability Thesis does not imply
the Church’s Thesis. Specifically, we show a natural interpretation
of intuitive computability under which intuitively learnable sets are
exactly algorithmically learnable but intuitively computable sets form
a proper superset of recursive sets.
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1 Intuitive Computability and the Church’s

Thesis

Before the emergence of computability theory as a branch of modern logic,
many algorithms had been known. Historically, the first non-trivial algo-
rithm, the Euclidean algorithm, dates back to circa 300 BC when the Greek
mathematician, Euclid of Alexandria, formulated his method for calculat-
ing the greatest common divisor. In 1900, shortly before the appearance of
the first mathematical models of computation, Hilbert formulated his tenth
problem of finding an algorithm for deciding whether a given equation is
solvable in integers. These and many other historical examples convince
us that even before the era of computability we had some intuitive notion of
algorithm, precise enough to be incorporated by science. The era of the com-
putability theory started in the 1930s and was marked with the appearance
of the first mathematical models of computation [1], [4], [9], [13]. Almost
immediately the following question arose: are the notions of intuitive com-
putability and, for example, λ-definability or, what comes to the same thing,
Turing-computability, equivalent? In other words, is the class of intuitively
computable sets equal to the class of recursive sets? The affirmative answer
to this question is known as the Church’s Thesis and was first formulated in
[1], [13].1 The Church’s Thesis, if not treated as definition, and we actually
do not treat it as such,2 is a statement about the equality of two classes of ob-
jects. From now on, by IC we mean a subset of P(ω), consisting of intuitively
computable sets of natural numbers. The class of recursive sets is known to
be ∆0

1 in arithmetical hierarchy.3 Having this notation, the Church’s Thesis
presents shortly as follows:

Thesis 1 (Church’s Thesis). IC = ∆0
1.

The inclusion ∆0
1 ⊆ IC is generally accepted as a rule. The whole mystery

lies in IC ⊆ ∆0
1. IC is not fully understood. We have some intuitions based

on practice in devising intuitive algorithms and writing computer programs.
Our intuitions are strengthened by deep insights of computability theory.

1Another formulation of the Church’s Thesis, in terms of functions, states that the class
of intuitively computable functions is identical with the class of partial recursive functions.
We restrict ourselves to the first formulation.

2Observe that treating IC = ∆0
1 as a definition of IC strips away the whole problem,

since then, IC ⊆ ∆0
1 holds.

3For a detailed exposition of arithmetical hierarchy see, for example, [11].
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However, it is still possible, though unlikely, that ∆0
1 6= IC. This possibility

is essentially used in the proof of the main theorem (Theorem 6) which is
based on the notion of intuitive learnability.

2 Intuitive Learnability and the Learnability

Thesis

The notion of intuitive learnability is based entirely on the notion of intuitive
computability. Given the intuitive notion of an algorithm, one can define the
notion of intuitive learnability as follows:

Definition 1 (Intuitive Learnability). A decision problem is intuitively
learnable if there is an intuitive algorithm that for each example of the prob-
lem runs ad infinitum and produces a finite sequence of yeses and nos such
that the last answer in the sequence is correct.

The origins of the notion of intuitive learnability can be traced back to
the same Euclid of Alexandria that is known as the author of the first non-
trivial algorithm. His Elements contains the first exposition of the axiomatic
method. The search for a proof of a sentence in a given axiomatic system
may be viewed as an example of an intuitive algorithm that generates a fi-
nite sequence of answers as to whether the input sentence is provable. At
the beginning the negative answer is produced. Then the space of proofs is
systematically explored. If the input sentence is provable, the exploration
finishes once the proof is found, the positive answer is produced, the al-
gorithm stops and the generated sequence of answers is ”no”, ”yes”, with
the last answer being correct. If the input sentence is not provable, the ex-
ploration goes on forever, and the generated sequence is always ”no”. This
intuitive algorithm shows that the set of theorems of a recursive set of axioms
is intuitively learnable.

Modern science, dating back to 17th century, provides another example
of intuitive learnability. Consider a simplified model of the activity of a
modern scientist. The scientist proposes a system of hypotheses. The system
is to describe the world correctly. Initially, the positive answer is produced,
meaning that hypotheses are considered true. Then the scientist proceeds to
testing. If hypotheses are correct, testing goes on forever and the generated
sequence of answers is always ”yes”. If hypotheses are incorrect, some test
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fails, the negative answer is produced, the activity stops and the generated
sequence of answers is ”yes”, ”no”, with the last answer being correct. This
intuitive algorithm shows that the problem of whether a system of empirical
hypotheses describes the world correctly is intuitively learnable.4

The axiomatic method and the scientific method had appeared long before
1960s when algorithmic learning theory was established. The emergence and
endurance of these sophisticated learning techniques provide a rationale that
we had some intuitive understanding of learnability in times preceding its
mathematical models.

Mathematical notion of learnability is due to Gold [3] and Putnam [10].
Here is Putnam’s definition of algorithmic learnability that accounts for a
mathematical counterpart of an intuitive idea of a set ”decidable” by a mind-
changing procedure:

Definition 2 (Algorithmic Learnability). Let A ⊆ ω. A is algorithmi-
cally learnable if there is a total computable function g : ω2 → {0, 1} such that
for all x ∈ ω: limt→∞ g(t, x) = 1⇔ x ∈ A and limt→∞ g(t, x) = 0⇔ x /∈ A.

Algorithmic learnability is equivalent with many natural notions. One
of them is the notion of FM-representability proposed by Mostowski in [8].
His research was motivated by computational foundations of mathematics
and the search for the semantics under which first-order sentences would be
interpreted in potentially infinite domains. Potentially infinite domains are
understood as growing sequences of finite models. We consider the latter to
have purely relational vocabulary and initial segments of natural numbers
as universes. Let R ⊆ ωr. Then by R(n) we denote R ∩ {0, 1, . . . , n}r. For
any model on natural numbers A over the signature σ = (R1, . . . , Rk) we
define the FM-domain of A as follows: FM(A) = {An : n ∈ ω}, where

An = ({0, 1, . . . , n}, R(n)
1 , . . . , R

(n)
k ). By N we denote the standard model of

arithmetic (ω,R+, R×) of the vocabulary σ = (R+, R×), where instead of
function symbols +, ×, we have corresponding relational symbols R+, R×,
interpreted in the same way as +, ×.

Definition 3 (FM-representability). We say that the relation R ⊆ ωr is
FM-represented in FM(A) by a formula ϕ(x1, . . . , xr) if and only if for each

4Our description is simplified. However, it seems, that it captures the main idea, that
the system of empirical hypotheses cannot be conclusively justified but can be conclusively
rejected (falsified).
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a1, . . . , ar ∈ ω both of the following conditions hold:

R(a1, . . . , ar) if and only if ∃m ∀k ≥ m Ak |= ϕ(a1, . . . , ar) (1)

¬R(a1, . . . , ar) if and only if ∃m ∀k ≥ m Ak |= ¬ϕ(a1, . . . , ar) (2)

We say that R is FM-representable in FM(A) if there is a formula ϕ
such that it FM-represents R in FM(A). If a relation is FM-representable in
FM(N) we say that it is FM-representable.

FM-representability is a good model of the semantic meaningfulness of
mathematical concepts that we learn. The simplest argument is that objects,
concepts and phenomena that are in the scope of cognitive accessibility and
computational tractability for a human mind are of a finite character. Even
if it is actually infinite, we may experience only its finite parts - hence we
assume that the only epistemically reasonable notion of infinity we may adopt
is the notion of potential infinity, explicated within the framework of FM-
domains.

Subsequent theorem is a collection of notions that turned out to be equiv-
alent to algorithmic learnability.

Theorem 1 (Limit Lemma). Let R ⊆ ωr. Then the following are equiva-
lent:5

1. R is recursive with recursively enumerable oracle,

2. deg(R) ≤ 0′,

3. R is algorithmically learnable,

4. R is ∆0
2,

5. R is FM-representable.

Algorithmic learnability and equivalent notions given in the Limit Lemma
are of mathematical nature. However, as we showed in the Definition 1, the
notion of learnability has also a very clear intuitive content that may be for-
mulated using the notion of intuitive computability. Therefore we actually

5The equivalence between 1, 2 and 4 is due to Shoenfield [12]. The equivalence between
3 and 4 is due to Gold [3] and Putnam [10]. The equivalence between 1-4 and 5 is due to
Mostowski [5], [8] and is called the FM-representability theorem.
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have two notions of learnability: the intuitive one, given in the Definition
1, and the mathematical one, given by any of equivalent statements in the
Limit Lemma. And just as in the case of the notions of intuitive and, for
example, Turing-computability, we face the question of whether the notion
of intuitive learnability is equivalent to the notion of algorithmic learnability.
In other words, is the class of intuitively learnable sets equal to the class of
algorithmically learnable sets? We put forward a claim, under the name of
Learnability Thesis, that intuitive learnability is equivalent to algorithmic
learnability. From now on, by IL we mean a subset of P(ω), consisting of
intuitively learnable sets of natural numbers. The class of algorithmically
learnable sets is, by the Limit Lemma, ∆0

2. Having this notation, the Learn-
ability Thesis presents shortly as follows:

Thesis 2 (Learnability Thesis). IL = ∆0
2.

At this point, a natural question to ask is: why should we accept this
claim? It is not our main purpose to argue in favour of the Learnability Thesis
(we need it in our argumentation for the impossibility of the specific kind of
proof of the Church’s Thesis). Nevertheless, as the Limit Lemma indicates,
algorithmically learnable sets form a very natural class of objects. So far,
the class has been discovered by researchers from three different domains:
computability theory (Shoenfield), artificial intelligence (Gold), logic and
philosophy (Putnam, Mostowski). Moreover, it is easy to see, that ∆0

2 ⊆ IL
– the argument goes analogously to the one that shows ∆0

1 ⊆ IC. The tricky
part is IL ⊆ ∆0

2. However, assuming the Church’s Thesis, the argument
trivialises (we provide it only for illustrative purposes).

Proposition 1. The Church’s Thesis entails the Learnability Thesis.

Proof. Assume the Church’s Thesis.
(∆0

2 ⊆ IL) Let A ∈ ∆0
2. Let g : ω2 → {0, 1} be as in the Definition 2. By

the Church’s Thesis, g is an intuitively computable total function. Devise an
intuitive infinite procedure for A, satisfying the Definition 1. Let x ∈ ω. Set
t = 0. In the infinite loop do: intuitively compute g(t, x), output the result
in case it differs from the result obtained previously, increment t. This shows
A ∈ IL.

(IL ⊆ ∆0
2) Let A ∈ IL. Then there is an intuitive algorithm, say G,

satisfying the Definition 1. Without loss of generality, G never stops. De-
vise an intuitive algorithm G′ that takes (t, x) as an input and returns the
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last answer generated by G on the input x up to t steps of the intuitive
computation. By the Church’s Thesis, the function intuitively computed by
G′ is recursive. Let g be that function. Clearly, g is total and satisfies the
Definition 2. Hence, by the Limit Lemma, A is ∆0

2.

The main theorem of this paper (Theorem 6) states that the reverse
implication does not hold. Before we give a proof, we analyse the proof
of the Church’s Thesis presented by Mostowski [6]. The proof of Mostowski
goes in the direction that the Theorem 6 considers impossible. Of course, the
proof of Mostowski uses some additional assumptions. We carefully discuss
them and indicate their weak points.

3 Analysis of the Proof of Mostowski

In [6] M. Mostowski gives an argument for the Church’s Thesis. The argu-
ment is based on three assumptions. Ontological assumption: there exist
finitely, but potentially infinitely many objects. Semantical assumption:
satisfaction and truth relations in finite models are recursive. Epistemolog-
ical assumption: there exists a recursive enumeration of the FM-domain.
It is namely assumed that cognitively accessible reality is finite, but poten-
tially infinite, that our knowledge is expressible in our language and that it is
decidable whether a given (without loss of generality - arithmetical) formula
is satisfied in a finite, but sufficiently large (arithmetical) model and that
enlarging the domain of the finite model we perform the computations (more
generally: cognitive activity) in is recursive. Further, it is argued by the FM-
representability theorem that the class of concepts that may be meaningfully
described in a potentially infinite domain with recursive truth relation and
recursive enumeration of finite approximations of the model is identical to the
class of ∆0

2 sets. Finally, an epistemological criterion separates computable
relations from other FM-representable ones. The key notion employed in
Mostowski’s justification of the Church’s Thesis is the notion of a testing
formula.

Definition 4 (Testing Formula). Let R ⊆ ωn and ϕ(x1, . . . , xn) be a for-
mula. A formula ψ(x1, . . . , xn) is a testing formula for ϕ(x1, . . . , xn) and R
if:

• for each a1, . . . , an ∈ ω there is n0 ∈ ω such that for each finite model
M , M |= ψ(a1, . . . , an) if and only if |M | ≥ n0,
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• for each a1, . . . , an ∈ ω and each finite model M , if M |= ψ(a1, . . . , an),
then R(a1, . . . , an) if and only if M |= ϕ(a1, . . . , an).

The conditions defining the notion of a testing formula for ϕ and R may
be read as an explication of the concept of knowing the answer (and achieving
the answer effectively) to the query of the form: is a tuple a1, . . . , an in the
relation R? Testing formulae then serve the abovementioned epistemolog-
ical criterion of separating decidable relations from other FM-representable
notions. This is justified by the following theorem.

Theorem 2 (Mostowski [7]). Let R ⊆ ωn. R is decidable if and only if there
are formulae ϕ(x1, . . . , xn), ψ(x1, . . . , xn) such that ψ(x1, . . . , xn) is a testing
formula for ϕ(x1, . . . , xn) and R.

Proof. Fix R ⊆ ωn.
(⇒) Let T (e, x1, . . . , xn, c) be the Kleene predicate meaning that c is the

code of the computation of the algorithm with code e on input x1, . . . , xn
(note that every quantifier occurring in T is bounded by c). Let U(c, y)
mean that a computation with code c accepts if y = 1 or rejects if y = 0.
Suppose that R is decidable and let e be the code of an algorithm deciding
R. We define:

ψ(x1, . . . , xn) = ∃c T (e, x1, . . . , xn, c),

ϕ(x1, . . . , xn) = ∃c (T (e, x1, . . . , xn, c) ∧ U(c, 1)).

Fix a = a1, . . . , an ∈ ω. We show that ψ is a testing formula for ϕ and R.
We have N |= ∃c T (e, a, c) thus for some n0 ∈ ω it holds that N |= T (e, a, n0).
Since the computation of e on a is unique, so is n0. Therefore for m ∈ ω,
Nm |= ψ(a) if and only if m ≥ n0.

Now fix m ∈ ω such that Nm |= ψ(a). Let n0 ∈ ω be such that
N |= T (e, a, n0). Then for every m ≥ n0 it holds that Nm |= T (e, a, n0).
If R(a), then N |= U(n0, 1) and Nm |= ϕ(a). On the other hand if ¬R(a),
then N |= U(n0, 0) and Nm |= ¬ϕ(a).

Therefore ψ(x1, . . . , xn) is a testing formula for ϕ and R.
(⇐) Let ψ(x1, . . . , xn) be a testing formula for ϕ(x1, . . . , xn) and R. The

algorithm deciding R is the following.
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Algorithm 1 Algorithm deciding R
Input: a1, . . . , an ∈ ω
Output: truth value of R(a1, . . . , an)

1: i← 0
2: while Ni 6|= ψ(a1, . . . , an) do
3: i← i+ 1
4: end while
5: return truth value of Ni |= ϕ(a1, . . . , an)

The algorithm implicitly uses subroutines to compute i 7→ pNiq and Ni |=
α which are both recursive. It also always halts since ψ(x1, . . . , xn) is a testing
formula for ϕ(x1, . . . , xn) and R. This ends the proof.

It is clear now that the Theorem 2 enables to identify recursive relations
as the class for which we are able to know the model in which the truth of
the relation’s representing formula fixes. As we see, the proof of the Theorem
2 depends on two following statements:

1. There is a recursive enumeration of finite models,

2. Every finite model Nm has a recursive satisfaction relation.

While the second assumption is not controversial we take a closer look at
1. This takes us directly to key considerations needed in the proof of the
Theorem 6. It is worth noting that the main assumptions of Mostowski’s
argument (namely the abovementioned ontological one and semantical one)
taken together with the FM-representability theorem are actually equivalent
to a version of the Learnability Thesis. It is so, since by those assumptions
we model relations that can be meaningfully described in potentially infi-
nite by an appropriate growing sequence of finite models with computable
satisfaction relation. To put it in an even stronger way, one might say that
any formal model compatible with ontological and semantical assumptions of
Mostowski (which by the way seem to be plausible philosophical statements
in general) shall be a class of finite models such that meaningful concepts
are computed in the limit. In particular, such semantics gives us a class
of formulae decidable in the limit, i.e. such that their interpretations sta-
bilise after finitely many steps within an (potentially) infinite trial-and-error
computable procedure. Such formulae express exactly intuitively learnable
concepts. By the FM-representability theorem the set of such concepts is
identical to the set of ∆0

2 relations.
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4 Learnability Thesis Does Not Entail Church’s

Thesis

So far, we have worked in relational arithmetical vocabulary σ = (R+, R×).
Now we extend it to σ′ = σ∪{A}, where A is an additional 1-place predicate.

Theorem 3. Let (N, A) be any σ′-model, R ⊆ ωn. R is decidable in A
if and only if there are σ′-formulae ϕ(x1, . . . , xn), ψ(x1, . . . , xn) such that
ψ(x1, . . . , xn) is a testing formula in FM((N, A)) for ϕ(x1, . . . , xn) and R.

Proof. The proof is an easy generalisation of the proof of the Theorem 2.
(⇒) It suffices to consider the Kleene predicate TA(e, x1, . . . , xn, c) for

oracle machines, meaning that c is the code of the computation of the oracle
algorithm with Gödel number e on input x1, . . . , xn using A as an oracle.

(⇐) The algorithm deciding R is essentially the same as the one from the
proof of the Theorem 2, but since the map i 7→ p(Ni, A

(i))q is recursive in A,
R is recursive in A (rather than just recursive as in the original proof).

Taking FM(N) as our formal model is aimed at distinguishing exactly
those properties that are essential for performing intuitive computations. It
seems that considering the FM-domain of the finite cuts of an arithmetical
model in which all predicate symbols have recursive interpretations, just as in
case of FM(N), is actually equivalent to assuming that intuitively computable
relations are exactly recursive ones, namely the Church’s Thesis itself. Ob-
serve that if we admit the existence of some non-recursive but intuitively com-
putable relations, we could intuitively compute the function i 7→ p(Ni, A

(i))q
and by the theorem 2 exactly those relations which are recursive in A have
testing formulae.

The arithmetical hierarchy can be naturally relativised to capture notions
concerning computations relative to oracles. By extending the arithmetical
vocabulary by an additional predicate and interpreting it as an oracle we
obtain a relativised arithmetical hierarchy of definable notions relative to
the oracle. A relation R is ∆A

2 if it is definable both by ΣA
2 and ΠA

2 formulae
i.e.:

R(a) ≡ ∃x∀y P (x, y, a), (3)

R(a) ≡ ∀x∃y S(x, y, a), (4)
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for some recursive in A predicates P and S. The following theorem is obvious
by the relativisation of the Limit Lemma:

Theorem 4. Let R ⊆ ωn. Then R is FM-representable in FM((N, A))
if and only if R is ∆A

2 .

Definition 5 (Low Sets). Let A ⊆ ω. A is low if deg(A)′ = 0′.

Of course every recursive set is low, but the converse does not hold. The
existence of non-recursive low sets is a folklore (see for example [2]).

Theorem 5. Let A be a low set. Then ∆A
2 = ∆0

2.

Proof. Fix a low set A. The non-obvious inclusion is ∆A
2 ⊆ ∆0

2.
Fix a ∆A

2 relation R. Then for some recursive in A predicates P and S
we have:

R(a) ≡ ∃x ∀y P (x, y, a)︸ ︷︷ ︸
≤deg(A)′

, (5)

R(a) ≡ ∀x ∃y S(x, y, a)︸ ︷︷ ︸
≤deg(A)′

. (6)

Since A is low, deg(A)′ = 0′. Therefore by the generalised Post’s theorem
R is recursive in 0′ and thus, by the Limit Lemma, R is ∆0

2.

Now, by an easy application of Theorems 4 and 5, we obtain:

Corollary 1. Let A be a low set and R ⊆ ωn. Then R is FM-representable
in FM((N, A)) if and only if R is ∆0

2.

By the Corollary 1, adding any low set A to the FM-domain does not
affect the class of FM-representable relations and therefore the Learnability
Thesis itself.

We are ready to prove our main theorem:

Theorem 6. The Learnability Thesis does not entail the Church’s Thesis.

Proof. Let A be a low, non-recursive set. Let the interpretation of IC be
{R : R ≤T A}. Therefore under such an interpretation the Church’s Thesis
fails. On the other hand consider an FM-domain FM((N, A)). We may
consider such an FM-domain since A ∈ IC. By the Corollary 1 relations
FM-representable in FM((N, A)) are exactly those which are ∆0

2. Therefore
the Learnability Thesis holds in such a model. We have shown that there
is an interpretation of IC such that IC 6= ∆0

1 and IL = ∆0
2. Therefore the

Learnability Thesis does not entail Church’s Thesis.
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5 Concluding Remarks

In this paper we have described the Learnability Thesis and argued that
an attempt of justifying the Church’s Thesis based only on the Learnability
Thesis must fail, by the Theorem 6. The clue of the argument is that there
exists an interpretation of intuitive computability consistent with the Learn-
ability Thesis such that certain intuitively computable sets are by no means
recursive.

One of the paths of criticism towards our main result could proceed by
questioning the naturality of our interpretation of IC, namely that it is only
theoretically admissible.6 This is why we have performed the proof of the
Theorem 6 in the framework that Mostowski used in his argument. This en-
abled us to justify the naturality of the interpretation of IC as {R : R ≤T A},
for some low set A.7 Mostowski used a very natural notion of a testing for-
mula to show that recursive relations are exactly those FM-representable re-
lations (equivalently - intuitively learnable) which have testing formulae. We
have pointed out a flaw in his argument to show that if we admit some non-
recursive but intuitively computable relations we are able to consider FM-
domains expanded with their interpretations. This has led to singling out the
relations recursive in A as those which have testing formulae in FM((N, A)).
On the other hand, by the Corollary 1, relations FM-representable in such
FM-domain are still ∆0

2.

6The discussion on the naturality of the interpretation of IC started with our first
attempt to prove that the Learnability Thesis does not entail Church’s Thesis in which we
considered IC = {R : R ≤T A, for any low set A}. Such an interpretation of intuitive
computability, however, would have very unnatural properties since for instance there are
low sets A,B such that their recursive sum A⊕B is Turing-equivalent to 0′. Therefore a
very natural operation such as taking a recursive sum of some two intuitively computable
sets would lead to intuitively non-computable set (assuming the Learnability Thesis).

7Under such an interpretation, IC is closed under Turing-reducibility and therefore also
under recursive sums, hence it is more natural.
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