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Abstract

Modulus of a computable approximation is a function which returns the number
of a stage at which the approximation has already converged for its argument.
The least modulus points at the earliest such stage for each of its arguments. We
recall and show some properties of least moduli, including their close connection
to c.e. degrees, and minimal witnessing functions for FM -representable sets. We
observe, for instance, that the non-density theorem for the d.c.e. degrees gives an
example of an incomplete degree that has no least moduli below 0′. Using the
properties of least moduli themselves, we construct a degree containing no least
moduli for itself and having least moduli of incomparable degrees. In particular,
the technique used demonstrates an approach of constructing a non-c.e. degree,
which is somewhat different from that proposed by Cooper.

keywords modulus, witnessing function, c.e. degrees, d.c.e. degrees, non-c.e. degrees,
incomparable degrees

1 Introduction

A family of sets of integers (As)s∈ω is said to be a computable sequence of computable sets
if there is a total computable function f : ω2 → {0, 1} such that As(x) = f(x, s), for all
x, s ∈ ω. We say that (As)s∈ω is a computable approximation if (As)s∈ω is a computable
sequence of computable sets and for each x ∈ ω the set {s : As(x) 6= As+1(x)} is finite.
When (As)s∈ω is a computable approximation then, for each x ∈ ω, it is meaningful to
speak about the limit lims→∞As(x). For such a family, there is a unique set A ⊆ ω
defined by A = λx[lims→∞As(x)]. A thus defined is said to be the limit of (As)s∈ω, and
is often written as limsAs = A. We also use a short form (As) instead (As)s∈ω.

Shoenfield [1] proved that sets ≤ 0′ are precisely those which have computable ap-
proximations:

Theorem 1 (Limit Lemma, Shoenfield [1]). A ≤ 0′ iff there is a computable approxima-
tion (As) such that limsAs = A.
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This class is nicely captured by other formalisms as well: it coincides with ∆0
2-definable

[2, 3] and FM -representable sets [4]. When thinking about computable approximations,
it is natural to ask about the properties of their moduli (of convergence) [1].

Definition 1. f : ω → ω is a modulus of a computable approximation (As) if for every
x ∈ ω:

∀t ≥ f(x)At(x) = A(x). (1)

A related notion is that of minimal modulus.

Definition 2. f is a minimal modulus of a computable approximation (As) if for every
x ∈ ω:

f(x) = µs [∀t ≥ sAt(x) = A(x)]. (2)

Strictly speaking, a modulus (or a minimal modulus) is always a function associated
with some computable approximation. However, we shall often speak about moduli or
minimal moduli of a set or even of a degree. This should be understood as follows. A
function f is a (minimal) modulus of A if there is a computable approximation (As) such
that limsAs = A and f is the (minimal) modulus of (As). Moreover, f is a (minimal)
modulus of a degree a if there is A ∈ a such that f is a (minimal) modulus of A. In the
context of FM -representability, the corresponding concepts are that of witnessing function
and minimal witnessing function [4]. Before we introduce them, let us briefly recapitulate
the basics of FM -representability.

Let N = (ω,+, ·) be the standard model of PA, where + and · are interpreted as ternary
relations. Nk denotes (ω � k,+ � k, · � k), for k > 0. We take arithmetical formulae to be
first-order formulae over the relational vocabulary (+, ·). We say an arithmetical formula
ϕ(x) FM -represents A ⊆ ω if for every n there is t such that for all s ≥ t: A(n)⇔ Ns |=
ϕ(n). A ⊆ ω is FM -representable if there is an arithmetical formula ϕ(x) FM -representing
A. Suppose ϕ(x) FM -represents a set. We say that f : ω → ω is a witnessing function
for ϕ if ∀n∀s ≥ f(n) [Nf(n) |= ϕ(n) ⇐⇒ Ns |= ϕ(n)]. Moreover, f : ω → ω is a minimal
witnessing function for ϕ if ∀n f(n) = µs[∀t ≥ s (Ns |= ϕ(n) ⇐⇒ Nt |= ϕ(n))]. By
the FM -representability theorem [4], FM -representable sets are precisely those which are
≤ 0′.

A (minimal) witnessing function is always associated with a particular FM -representing
formula. However, we often speak about witnessing or minimal witnessing functions of
sets and degrees. We believe the reader is able to make these concepts clear (as we have
done it for moduli).

Given ϕ(x) FM -representing A, we can define a computable approximation (As) such
that limsAs = A by setting As(n) = 0, if s ≤ n, and As(n) = the truth value of
Ns |= ϕ(n), if s > n. In a sense, one can view FM -representing formulae as com-
putable approximations. However, it is not the case that every computable approximation
limsAs = A has a corresponding arithmetical formula ϕ(x) FM -representing A and satis-
fying As(n)⇔ Ns |= ϕ(n) (whenever this is meaningful). This can be easily observed by
applying a diagonal argument: take any computable approximation (As), a computable
enumeration ϕ0(x), ϕ1(x), . . . of arithmetical formulae with one free variable and define a
computable approximation (A′s) by setting A′s(n) = As(n), if s 6= n + 1 and A′s(n) = the
truth value of Ns |= ¬ϕs(n) if s = n+ 1. Taking s = n+ 1 is for the most part arbitrary:
this is the smallest s for which Ns |= ¬ϕ(n) is meaningful.

The above property should not worry us too much because we primarily want to look
at the Turing degrees of minimal moduli and minimal witnessing functions. As we shall
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see in Section 2, the degrees of minimal moduli and minimal witnessing functions are the
same. This gives us an opportunity to examine the degrees of both kinds of functions by
analysing the properties of minimal moduli themselves.

2 Basic properties

In this section, we give some basic properties of least moduli and their Turing degrees.

Proposition 1 (Modulus Lemma, Shoenfield [1]). Let A ≤ B, where B is c.e. Then
there is a computable approximation (As) and a function m such that limsAs = A, m is
a modulus of (As) and m ≤ B.

We introduce a notion of a self-modular degree. This notion does not appear in
the literature, but will simplify our presentation, saving us from saying “(not) having a
modulus for itself” (with reference to sets and degrees) repeatedly.

Definition 3. A is self modular if there is a modulus m of A such that m ≤ A. A degree
is self modular if it contains a self-modular set.

The following proposition is a corollary of Proposition 1 and the Limit Lemma (The-
orem 1). It shows that c.e. degrees and self-modular degrees coincide.

Proposition 2 (Soare [5]). a is c.e. iff a is self modular.

As for least moduli, we can easily prove the following:

Proposition 3. For any computable approximation (As), the least modulus of (As) is of
c.e. degree.

Proof. Let m be the least modulus of a computable approximation (As). Define a
c.e. set M = {(x, s) : ∃ t ≥ sAt+1(x) 6= At(x)} and show that m ≡M .

As far as witnessing functions are concerned, Mostowski [4] shows that a set is FM -
representable iff it has a witnessing function ≤ 0′. By an easy modification of the previous
argument, we can obtain

Proposition 4. For any FM -representing formula ϕ(x), the minimal witnessing function
of ϕ(x) is of c.e. degree.

Given a set A ≤ 0′ and its modulusm, we always have A ≤ m. Hence, the degree of any
least modulus m is to be found among c.e. degrees ≥ A. The question is whether one can
find a least modulus of A in any c.e. degree B ≥ A. It is not hard to prove that this is in
fact the case. One can do this by constructing an appropriate computable approximation
to A. However, we approach this question in a slightly different way. We prove that
each FM -representable set A has minimal witnessing functions in all c.e. degrees ≥ A
(Proposition 5). The result for computable approximations and least moduli will follow
(Proposition 6).

Before we proceed to the proof, let us introduce some notation. < is defined as
usual. For an arithmetical formula φ and a definable constant k, write φ<k for φ with all
quantifiers strictly bounded by k.1 Observe that there is a simple formula that defines a
constant MAX which, in each initial segment of N, denotes its unique maximal element.
The following simple lemma will be useful.

1This can be made precise as follows. If φ is x = y, x+ y = z or x× y = z then φ<k is φ. If φ is ¬ψ
or ψ ⇒ ξ then φ<k is ¬ψ<k or ψ<k ⇒ ξ<k, respectively. If φ is ∃xψ then φ<k is ∃x < k ψ<k.
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Lemma 1. Let φ(x) be an arithmetical formula. For all n ∈ ω, a < n: Nn |= φ(a) iff
Nn+1 |= φ<MAX (a).

Proposition 5. Suppose A ≤ B and B is c.e. Then, there is a minimal witnessing
function of A of the same degree as B.

Proof. Choose machines a and b such that A is the set computed by a in B, and B =
{x ∈ ω : ∃c T (b, x, c)}, where T is the Kleene predicate. Without loss of generality, assume
0 < a < b. Let β(x) := ∃c T (b, x, c). Let TX be the Kleene predicate for machines with
oracle. If φ is an arithmetical formula with one free variable, let T φ denote the Kleene
predicate TX with all occurrences of X(y) replaced by φ(y). Given a computation c, let
U(c) be its output. Now, define an arithmetical formula ψ(x) as

[∃c(c = MAX ∧ T (b, x, c)) =⇒ ¬∃c < MAX (T β<MAX (a, x, c) ∧ U(c) = 1)]∧ (3a)

∧ [¬∃c(c = MAX ∧ T (b, x, c)) =⇒ ∃c(T β(a, x, c) ∧ U(c) = 1)] (3b)

We show that ψ(x) FM -represents A. Let n ∈ ω. Observe that (3a) and the predecessor
of (3b) are true in sufficiently large models. Hence, the successor of (3b) determines the
truth value of ψ(n). Sufficiently large models contain the computation of a on input n
with all necessary questions to the oracle B answered correctly.2 Therefore, in sufficiently
large models, ψ(n) is true exactly when n ∈ A.

Now, let m be the minimal witnessing function of ψ(x). We show that B ≤ m.
To compute B(n) return the truth value of Nm(n) |= β(n). This is obvious, if n /∈ B
because Nm(n) 6|= β(n). Assume n ∈ B and let c0 be such that T (b, n, c0). Then Nc0+1 |=
∃c(c = MAX ∧ T (b, n, c)). By inspecting ψ(x) we see that Nc0+1 |= ψ(n) exactly when
Nc0+1 |= ¬∃c < MAX (T β<MAX (a, x, c) ∧ U(c) = 1)] (this is meaningful because a < c0). By

Lemma 1, Nc0+1 |= ¬∃c < MAX (T β<MAX (a, x, c) ∧ U(c) = 1)] iff Nc0 |= ¬∃c(T β(a, x, c) ∧
U(c) = 1)]. But Nc0 |= ψ(n) exactly when Nc0 |= ∃c(T β(a, x, c) ∧ U(c) = 1)]. Hence,
Nc0 |= ψ(n)⇔ Nc0+1 6|= ψ(n). Consequently, m(n) ≥ c0 + 1. Therefore, Nm(n) |= β(n).

Now, we show how to find m(n) recursively in B. We simply look for s0 := the least
s such that Ns contains a, b, n, the computation of b on input n (if it exists) and the
B-computation of a on input n. Obviously, m(n) ≤ s0 + 1. Now, finding the value of
m(n) is easy.

Proposition 6. Suppose A ≤ B and B is c.e. Then, there is a least modulus of A of the
same degree as B.

Proof. Let a, b, ψ(x) be as in the proof of Proposition 5. Let m be the minimal witnessing
function of ψ(x). Define a computable approximation (As) as follows:

As(x) =


0 s < max(a, b, x) (1)

the truth value of Nmax(a,b,x)+1 |= ¬ψ(x) s = max(a, b, x) (2)

Ns |= ψ(x) s > max(a, b, x) (3)

Here, max is a number-theoretic function selecting the maximal argument. Obviously,
A0(x) = 0 always (this is what we usually want from a computable approximation), and
limsAs = A. We show that m is the least modulus of (As). m(x) points to the least

2It is important to notice that, for any k ∈ ω, when β(k) becomes true in some model then it stays
true in larger models. This property guarantees that when a question to the oracle is established for the
first time, it remains established forever.
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stage s such that the truth value of Ns |= ψ(x) is correct and remains correct later on.
Hence, Nm(x) |= ψ(x) is a meaningful statement and, consequently, m(x) > max(a, b, x).
Moreover, At(x) = the truth value of Nm(x) |= ψ(x), for all t ≥ m(x). Suppose m(x) =
max(a, b, x) + 1. By (2) we have Am(x)−1(x) 6= Am(x)(x). So m(x) points to the least
stage at which (As) settles down for x. Now, assume m(x) > max(a, b, x) + 1. Then, we
have Nm(x)−1 |= ψ(x) 6⇔ Nm(x) |= ψ(x) and thus Am(x)−1(x) 6= Am(x)(x). Again, m(x) is
as wanted.

Propositions 5 and 6 give us a broad picture of the Turing degrees of least moduli: for
any degree a ≤ 0′, the degrees of its least moduli are precisely {b : b ≥ A ∧ b is c.e.}.

Finally, let us prove another fact which will be useful in our main construction from
Section 4.

Proposition 7. A degree is self modular iff all its members have least moduli precisely of
that degree.

Proof. The right-to-left part is obvious. Assume a is self modular. Then, by Proposition 2,
a is c.e. Choose a c.e. set B ∈ a. Let A ∈ a. We have A ≤ B. By Proposition 6, A has a
least modulus of the degree a.

3 Other properties

Natural questions arise in the context we have already outlined. For example, one may
be tempted to find degrees the least moduli of which behave in essentially different ways.
In this section, we give a few such examples.

Recall that A ⊆ ω is 2-c.e. (or d.c.e.) if there are c.e. sets A1, A2 such that A = A1−A2.
This notion can be generalized to any n > 2. Roughly speaking, a set is n-c.e. if it is a
boolean combination of n c.e. sets. Such sets were introduced by Putnam [2] and Gold
[3]. A Turing degree is n-c.e. if it contains some n-c.e. set. Cooper [6] was the first to
separate (n+ 1)-c.e. and n-c.e. degrees (see also [7]):

Theorem 2 (Cooper [6]). For all n > 0, there is a properly (n + 1)-c.e. degree [i.e., an
(n+ 1)-c.e. degree which is not n-c.e.].

Observe that by Proposition 1, a properly (n+1)-c.e. degree does not contain any of its
least moduli. All least moduli of such a set are to be found strictly above it. In contrast,
by Proposition 6, each c.e. degree contains least moduli for all its members. Moreover,
by the Sacks Density Theorem [8], given any c.e. degree a < 0′, there is a degree b such
that a < b < 0′. Hence, by Proposition 6, there are least moduli for a strictly between a

and 0′. However, this is not the case for (n + 1)-c.e. degrees. To see this, we turn to the
following powerful result:

Theorem 3 (Cooper, Harrington, Lachlan, Lempp and Soare [9]). There is a maximal
incomplete 2-c.e. degree (i.e., a 2-c.e. degree d < 0′ such that there is no 2-c.e. degree e

with d < e < 0′).

Since every c.e. degree is also 2-c.e. (because it contains a 2-c.e. set), there can be no
c.e. degrees strictly between d and 0′. Therefore, we obtain the following:

Corollary 1. There is a degree d < 0′ such that all its least moduli are of degree 0′.
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What other configurations of c.e. degrees can we find between 2-c.e. degrees and 0′?
This sort of question has received some attention in the context of maximality and splitting
properties. For example, Arslanov, Cooper and Li [10, 11] showed that a maximal 2-
c.e. degree cannot be low. Moreover:

Theorem 4 (Arslanov, Cooper and Li [10, 11]). For any low 2-c.e. degree d there are
incomparable c.e. degrees a0, a1 > d such that a0 ∪ a1 = 0′.

How can one obtain a properly 2-c.e. degree that is low? One way of doing so, perhaps
not the most elegant, is to use Cooper’s technique [6] for constructing a properly 2-
c.e. degree and attach to it a permitting argument in a non-computable low c.e. degree
(low c.e. degrees > 0 exist—for example, the original Friedberg-Muchnik construction
[12, 13] yields such degrees, as observed by Soare [14]). In such a manner, we can obtain
a properly 2-c.e. degree, say d, that is low and, by Theorem 4, 0′ splits above d into two
incomparable c.e. degrees. Hence, by Proposition 6, d is non self modular and has two
incomparable least moduli.

In what follows, we construct a set of this kind. However, our construction achieves
this goal differently: it exploits the properties of least moduli themselves and is based on
requirements which explicitly refer to least moduli of the set under construction. This
gives us another way of constructing a properly 2-c.e. degree, somewhat different from
Cooper’s technique [6].

4 A non-self-modular degree with incomparable least

moduli

Theorem 5. There is a degree which is not self modular and has least moduli of incom-
parable degrees.

We construct a set F and functions f, g by full approximation: we build computable
approximations (Fs), (Gs), (fs), (gs) such that lims Fs = F = limsGs, lims fs = f and
lims gs = g. To make deg(F ) non self modular, we use a strategy described in Section 4.2.
To make deg(f) and deg(g) incomparable, we use a slightly modified Friedberg-Muchnik
technique, as described in Section 4.1. This gives us f 6≤ g and g 6≤ f . We also make f
and g into the least moduli of (Fs) and (Gs), respectively. Hence, we have F ≤ f and
F ≤ g.

We use fixed enumerations of all partial computable functionals Ψ0,Ψ1,Ψ2, . . . , and
all partial computable functions φ0, φ1, φ2, . . . . We write Ψn,s and φn,s for Ψn and φn enu-
merated up to stage s, respectively. The use function of a partial computable functional
(approximated up to stage s) ΦX

e,s(x) is denoted by the corresponding small greek letter
ϕXe,s(x) and is equal to 1 plus the maximal number used in s steps of the computation of
the algorithm e on input x relative to the oracle X, if the computation stops in ≤ s steps,
and = 0 otherwise. ϕXe (x) is ϕXe,s(x) if ΦX

e,s(x) ↓, for some s, and undefined otherwise.

4.1 Making f and g incomparable

For the most part, this is Friedberg and Muchnik. There are three differences. First is
that we construct functions which can assume arbitrarily large values. Second is that
we try to make f and g into the least moduli of (Fs) and (Gs). Third is that we want
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to ensure that lims Fs = limsGs. To handle the last requirement, we shall use pending
functions pF (x, s), pG(x, s). When pF (x, s) = 1 (or pG(x, s) = 1) we have a pending
action: withdraw x from F using (Fs) (or (Gs)) at stage s+ 1.

For each e ∈ ω, we have the following requirements:

Fe : f 6= Φg
e,

Ge : g 6= Φf
e .

We describe a strategy for meeting Fe in isolation (the strategy for Ge is the same, except
obvious differences). Fe is assigned a witness x. We try to guarantee f(x) 6= Φg

e(x) by
making f0(x) = 0, f1(x) = 0, . . . unless we encounter a stage t with Φgt

e,t(x) ↓= 0. If there
is no such stage then either Φg

e(x) > 0 or Φg
e(x) ↑, leaving Fe satisfied. Let t0 be the

least stage with Φ
gt0
e,t0(x) ↓= 0. We freeze gt0 � ϕ

gt0
e,t0(x) to preserve Φ

gt0
e,t0(x) ↓ and to have

Φg
e(x) = Φ

gt0
e,t0(x). We set ft0+1(x) = t0 + 1, Ft0+1(x) = 1 and pF (x, t0 + 1) = 1. At stage

t0 + 2 we have a pending action: we withdraw x from F using (Fs). This forces us to set
ft0+2(x) = t0 + 2. Thanks to this mandatory withdrawal, we obtain lims Fs = limsGs.
Eventually, we get f(x) = t0 + 2 6= 0 = Φg

e(x).

4.2 Making a non-self-modular degree

In this section, we develop requirements for constructing a non-self-modular degree (ob-
serve that by Proposition 2, such a degree must be non-c.e). Given such a requirement,
we also show how are we going to satisfy it (in isolation).

4.2.1 Requirements

By Proposition 7, a degree is non self modular iff it contains a set such that none of its
least moduli is precisely of that degree. More formally, we want to construct F such that
for all computable approximations (Bs) and all functions m : ω → ω:

m is the least modulus of (Bs) ∧ (Bs) converges to F =⇒ m 6≤ F .3 (4)

Equivalently:

m is the least modulus of (Bs) ∧ m ≤ F =⇒ (Bs) does not converge to F (5)

To translate this into requirements for our construction, some more notation is in order.
We say φe is a computable approximation if φe is total, assumes values in {0, 1} and for
every x ∈ ω, limt→∞ φe(x, t) exists. We write limφe to denote the partial function f
defined as f(x) := lims φe(x, s) if λs[φe(x, s)] is total and lims φe(x, s) exists, undefined
otherwise. limφe may be viewed as a (partial) characteristic function. Now, in terms of
functionals, ΨF

n is the least modulus of φe iff ΨF
n is total, φe is a computable approximation

and ΨF
n = λx[µs(∀t ≥ s φe(x, t) = limu φe(x, u))]. Hence, one can reformulate (5) and

obtain individual requirements which we apply in the construction: deg(F ) is non self
modular iff Re,n holds for all e, n ∈ ω, where:

Re,n : ΨF
n is the least modulus of φe ⇒ limφe 6= F (6)

3Recall that if m is a least modulus for F then F ≤ m.
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4.2.2 Strategy

How are we going to satisfy a single Re,n? We reserve for Re,n a fresh witness x (in
particular, x is not enumerated into F at this point) and wait for a stage s such that
ΨFs
n,s(x) ↓= m (if we always have ΨFs

n,s(x) ↑ then our requirement remains satisfied because
ΨF
n is not a least modulus). Suppose we have ΨFs

n,s(x) ↓ at some stage s and let m =
ΨFs
n,s(x). We preserve the computation with the restraint ψFs

n,s(x) and wait for a stage
t > s such that φe,t(x,m) ↓ (if there is no such stage, Re,n remains satisfied forever
because φe is not a computable approximation). Suppose we have φe,t(x,m) ↓ at some
stage t ≥ s and let φe,t(x,m) = 1. In this case, we do not take any action. Let us see
why not taking any action is a good option. If φe is a computable approximation and
settles down beginning at stage m, then limt→∞ φe(x, t) = 1. However, x has not been
enumerated in F at any previous stage, so we have Ft(x) = 0. If x stays out of F later on,
we have F (x) = 0. Hence, limt→∞ φe(x, t) 6= F (x). If φe is a computable approximation
and does not settle down at stage m then it settles down at a later stage and thus ΨF

n is not
the least modulus for φe and Re,n remains satisfied. Obviously, if φe is not a computable
approximation, Re,n remains satisfied as well.

Now, let us consider the case when we have a restraint ψFs
n,s(x) and a later stage t > s

with φe,t(x,m) = 0. If we do not take any action now, we may be in trouble. If ΨF
n is the

least modulus of φe then we have limt→∞ φe(x, t) = F (x), a situation we want to avoid.
Therefore, we set Ft+1(x) = 1. The restraint ψFs

n,s(x) is still there. Now, for u ≥ t + 1,
the computation ΨFu

n,u(x) may be different from ΨFs
n,s(x). Hence, we wait for a stage u > t

such that ΨFu
n,u(x) ↓. Again, our requirement will remain satisfied if there is no such stage

since then ΨF
n is not the least modulus of φe. Let u > t be such that ΨFu

n,u(x) ↓= m′.
We wait for stage v ≥ u with φe,v(x,m

′) ↓. Our requirement is satisfied if there is no
such stage since then φe is not a computable approximation. Let v ≥ u be such that
φe,v(x,m

′) ↓. We have two cases, either φe(x,m
′) = 0 ∨ (φe(x,m

′) = 1 ∧ m′ < m) or
φe(x,m

′) = 1 ∧ m′ ≥ m.
First, assume φe(x,m

′) = 0 ∨ (φe(x,m
′) = 1 ∧ m′ < m). Then, we take no action. Let

us see why it works. First, suppose φe(x,m
′) = 0 and assume ΨF

n is the least modulus of φe.
We have limt φe(x, t) = 0 6= F (x), so limφe 6= F . Second, assume φe(x,m

′) = 1 ∧m′ < m.
We have φe(x,m

′) = 1, φe(x,m) = 0 and m′ < m, so ΨF
n is not the least modulus of φe.

Now, consider the case φe(x,m
′) = 1 ∧ m′ ≥ m. In fact, we have m′ > m, because

φe(x,m) = 0. Therefore, we set Fv+1(x) = 0. Now, because the restraint ψFs
n,s(x) is

still valid and Fs(x) = Fv+1(x) = 0, Ψ
Fv+1

n,v+1(x) = ΨFs
n,s(x) = m. We have φe(x,m) = 0,

φe(x,m
′) = 1 and m < m′. Consequently, ΨF

n is not the least modulus of φe.
We enclose our findings in a concise condition which specifies when we should act in

order to satisfy Re,n in isolation. We use an auxiliary function h(e, n, x, s)—the modulus
tracker—which is set at the beginning (i.e., for s = 0) to 0 for all arguments e, n, x. It will
be convenient to write hs(e, n, x) instead of h(e, n, x, s). Recall that we decide to act for the
first time when we encounter a stage t+1 with m := ΨFt

n,t(x) ↓ and φe,t(x,m) = 0. Observe

that this is exactly when the condition φe,t(x,Ψ
Ft
n,t(x)) = Ft(x) ∧ ΨFt

n,t(x) ≥ ht(e, n, x)
is satisfied: since x is the fresh witness, we have Ft(x) = 0 and thus φe,t(x,m) = 0;
obviously, m ≥ ht(e, n, x) because the modulus tracker is set to 0 from the start and
repeats its previous value when nothing happens. When acting for the first time, say at
stage t + 1, we enumerate x into F and keep the restraint for ΨFt

n,t(x). This is where we
update the modulus tracker: ht+1(e, n, x) = m. According to our considerations from this
section, we do not have to take any further actions unless we encounter a stage u > t
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with m′ := ΨFu
n,u(x) ↓, φe,u(x,m′) = 1 and m′ ≥ m. This is precisely when the condition

φe,u(x,Ψ
Fu
n,u(x)) = Fu(x) ∧ ΨFu

n,u(x) ≥ hu(e, n, x) is satisfied.

4.3 Main construction

Let us recall our requirements:

Fe : f 6= Φg
e

Ge : g 6= Φf
e

Re,n : ΨF
n is the least modulus of φe ⇒ limφe 6= F

Write Rk interchangeably with Rk1,k2 , where k is the code of (k1, k2). Fix a computable
priority ordering, for example: F0 < G0 < R0 < F1 < G1 < R1 < F2 < G2 < R2 < . . . .
As usual, stronger priorities are to the left.

We say Fe requires attention at stage s + 1 if there is an x reserved for Fe at stage
s + 1 and fs(x) = Φgs

e,s(x). Similarly, we say Ge requires attention at stage s + 1 if there
is an x reserved for Ge at stage s + 1 and gs(x) = Φfs

e,s(x). We say that Re,n requires
attention at stage s+ 1 if there is an x reserved for it at stage s+ 1 and φe,s(x,Ψ

Fs
n,s(x) ↓

) = Fs(x) ∧ ΨFs
n,s(x) ↓≥ hs(e, n, x).

***

Stage 0. Set f0 = g0 = F0 = G0 = ∅ and pF (x, 0) = pG(x, 0) = 0, for all x ∈ ω, which
means that there are no pending actions associated with functions f, g and approximations
(Fs), (Gs). We also set the modulus tracker h0(e, x, n) = 0, for all arguments e, x, n. No
number is reserved for any requirement. There are no restraints associated with any
requirement either.

Stage s+ 1. See if there are any pending actions, i.e., pF (x, s) or pG(x, s) are > 0 for
some x. This is a recursive question because pending functions can assume values > 0
only for numbers that have been already reserved for some requirements and there is only
a finite number of such numbers and we know their least upper bound at each stage. If
there are some pending actions, we perform them. In fact, at any stage we always have
only one pending action, if any. So, consider a case where we have a pending action
pF (e, x) = 1. We set Fs+1(x) = 0, fs+1(x) = s + 1, pF (e, x) = 0 and proceed to the next
stage. If we have pG(e, x) = 1 then we set Gs+1(x) = 0, gs+1(x) = s+ 1, pG(e, x) = 0 and
proceed to the next stage.

If there are no pending actions [i.e., pF (x, s) = pG(x, s) = 0 for all x ∈ ω], check
whether there are any requirements needing attention. If there are none, then take the
strongest requirement among those which have no reservations and reserve for it a fresh
witness. Proceed to the next stage.

Suppose there are no pending actions and some requirements need our attention. Take
the strongest such requirement—we say it receives our attention. Let x be the number
reserved for it at the present stage. Cancel all restraints and reservations for requirements
of lesser priority.

Assume that the requirement receiving our attention is Fe (we handle Ge in a similar
way). Hence, we have fs(x) = Φgs

e,s(x). Preserve the computation Φgs
e,s(x) with the restraint

ϕgse,s(x). Put fs+1(x) = s + 1, Fs+1(x) = 1 and define a pending action pF (e, x) = 1.
Proceed to the next stage.

Assume that the requirement receiving our attention is Re,n. If there is no restraint
associated with Re,n then define it as ψFs

n,s(x) in order to preserve ΨFs
n,s(x). Put Fs+1(x) =

9



Gs+1(x) = 1−Fs(x) (Fs(x) is the same as Gs(x)). Moreover, set fs+1(x) = gs+1(x) = s+1
and hs+1(e, n, x) = ΨFs

n,s(x).

4.4 Verification

Lemma 2. Each requirement receives attention only finitely often.

Proof. We proceed by induction on the priority ordering. Fix a requirement P and assume
that all requirements < P receive attention only finitely often. Let t be the least stage
for which there are no pending actions, no requirement < P receives attention at stages
≥ t and some x is reserved for P at stage t.

Suppose P = Fe (handling Ge is analogous). If Fe does not receive attention at stages
> t then it receives attention only finitely often all along. Suppose Fe receives attention
at some stage > t and let u + 1 be the least. Hence, fu(x) = Φgu

e,u(x) ↓. Since our
construction always picks up a fresh witness, we have fu(x) = 0. Observe that for all
v ≥ u, gv � ϕgue,u(x) = g � ϕgue,u(x), where ϕgue,u(x) is the restraint defined at stage u + 1 to
preserve Φgu

e,u(x) ↓. Hence, for all v ≥ u+1, Φgv
e,v(x) ↓= 0. Moreover, we have fv(x) = u+2,

for v ≥ u + 2. It means that Fe does not receive attention at stages > u + 1. Therefore,
Fe receives attention only finitely often.

Let P = Re,n. We show that Re,n receives attention no more than twice with x being
reserved for it. SupposeRe,n has received attention twice after stage t: let u+1 be the first
and v + 1 be the second such stage. Let us denote m := ΨFu

n,u(x) and m′ := ΨFv
n,v(x). We

have φe,u(x,m) = Fu(x) and m ≥ hu(e, n, x) = 0. Moreover, we have φe,v(x,m
′) = Fv(x)

and m′ ≥ hv(e, n, x) = m. Because x is a fresh witness, we have Fu(x) = 0 and thus
φe,u(x,m) = 0. x is enumerated into (Fs) at stage u + 1 and stays there through stages
u + 1, u + 2, . . . , v. Hence, Fv(x) = 1 and thus φe,v(x,m

′) = 1. But then we cannot
have m = m′ and hence m′ > m. Recall, however, that we have defined a restraint
r := ψFu

n,u(x) at stage u+ 1 and thus prevented requirements > Re,n from changing Fu � r
(higher priority requirements cannot do that because of the inductive assumption). At
stage v+ 1 we withdraw x from (Fs) and hence Fu(x) = Fv+1(x) = 0. Therefore, we have
Fu � r = Fv+1 � r. We show that for all w ≥ v + 1: Fu � r = Fw � r and hw(e, n, x) = m′.
We have already shown this for w = v + 1. Assume Fu � r = Fw � r and hw(e, n, x) = m′,
for a fixed stage w ≥ v+1. Then ΨFw

n,w(x) = ΨFu
n,u(x) = m < m′ = hw(e, n, x), so Re,n does

not receive attention at stage w + 1. Hence, Fu � r = Fw+1 � r and hw+1(e, n, x) = m′.
This means that Re,n does not receive attention at stages > v+1 and, hence, Re,n receives
attention only finitely often.

The construction is recursive and therefore (fs), (gs), (Fs), (Gs) are computable fam-
ilies of computable sets. However, by Lemma 2, those families are in fact computable
approximations. To see this, combine Lemma 2 with the observation that each number
x is either never reserved for any requirement whatsoever or is reserved only once and
only for one requirement. Therefore, the following limits exist: lims fs = f , lims gs = g,
lims Fs = F , limsGs = G.

Lemma 3. Each requirement is eventually satisfied.

Proof. Let P be any requirement. By Lemma 2, all requirements < P receive attention
only finitely often. Let t be the least stage for which there are no pending actions, no
requirements < P receive attention at stages ≥ t and some x is reserved for P . Observe
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that t is the first stage at which x is reserved for P . Since our construction always picks
up a fresh witness, we have ft(x) = gt(x) = Ft(x) = Gt(x) = 0.

Suppose P = Fe. We have two cases: either ∃u > tΦgu
e,u(x) ↓= 0 or not. Suppose the

latter. It follows that Fe does not receive attention at stages u > t and hence fu(x) = 0
for u > t. Therefore, f(x) = lims fs(x) = 0. Moreover, observe that ¬∃u > tΦgu

e,u(x) ↓= 0
implies that either Φg

e(x) ↑ or Φg
e(x) > 0. Hence, f(x) 6' Φg

e(x) and thus Fe is satisfied.
Now, suppose ∃u > tΦgu

e,u(x) ↓= 0 and let u be the least such stage. It means
that Fe receives attention at stage u + 1 and 0 = fu(x) = Φgu

e,u(x). Observe that for
all v ≥ u, gv � ϕgue,u(x) = g � ϕgue,u(x), where ϕgue,u(x) is the restraint defined at stage
u + 1 to preserve Φgu

e,u(x). Hence, Φg
e(x) ↓= 0. However, ∀v > u + 1 fv(x) = u + 2 so

f(x) = lims fs(x) = u+ 2. Therefore, f(x) 6= Φg
e(x).

Now, suppose P = Re,n. To prove that Re,n is eventually satisfied, assume ΨF
n is the

least modulus of φe. We show that under this assumption, Re,n does not receive attention
at stages > t or receives it only once and in both cases it becomes satisfied.

First, assume the contrary, that Re,n receives attention twice or more at stages > t.
In fact, we have shown (see Lemma 2) that Re,n receives attention no more then twice
while reserved for the same number. So, let r + 1, r′ + 1 be the first and the second such
stage, respectively. Hence, we have φe,r(x,Ψ

Fr
n,r(x)) = Fr(x), φe,r′(x,Ψ

Fr′
n,r′(x)) = Fr′(x)

and Ψ
Fr′
n,r′(x) ≥ h(e, n, x, r′) = ΨFr

n,r(x). Recall, that we have defined a restraint ψFr
n,r(x)

at stage r + 1, denote it by z, to protect ΨFr
n,r(x). We have Fr(x) = 0, Fr′+1(x) = 0 and

Fq(x) = 1, for r + 1 ≤ q ≤ r′. No number ≤ z and other than x has been enumerated
nor withdrawn by (Fs) at stages r, r + 1, . . . , r′, r′ + 1. Hence, Fr � z = Fr′+1 � z.

Therefore, Ψ
Fr′+1

n,r′+1(x) = ΨFr
n,r(x). Let v ≥ r′ + 1. Since Re,n does not receive attention

at stages > r′ + 1 and neither lower (by construction) nor higher priority requirements
(by inductive assumption and our choice of t) can affect numbers ≤ z, we have Fv �
z = Fr′+1 � z. Therefore ΨFv

n,v(x) = ΨFr
n,r(x) and consequently ΨF

n (x) = ΨFr
n,r(x). Now,

observe that we have φe,r(x,Ψ
Fr
n,r(x)) = Fr(x) = 0, φe,r′(x,Ψ

Fr′
n,r′(x)) = Fr′(x) = 1 and

Ψ
Fr′
n,r′(x) ≥ ΨFr

n,r(x). Hence, Ψ
Fr′
n,r′(x) > ΨFr

n,r(x). So φe changes its mind after stage ΨFr
n,r(x).

Since ΨF
n (x) = ΨFr

n,r(x), ΨF
n is not the least modulus of φe, contrary to our assumption.

Second, suppose Re,n never receives attention at stages > t. Hence, we have Fw(x) =
Ft(x) = 0, for w > t, and thus F (x) = 0. Let u be the least stage > t such that: ΨFu

n,u(x) ↓,
φe,u(x,Ψ

Fu
n,u(x)) ↓ and Fu � ψFu

n,u(x) = F � ψFu
n,u(x). We have ΨFu

n,u(x) = ΨF
n (x) and

φe,u(x,Ψ
Fu
n,u(x)) = φe(x,Ψ

F
n (x)). Because Fu(x) = 0 and Re,n does not receive attention

at stage u + 1, we have φe,u(x,Ψ
Fu
n,u(x)) ↓6= Fu(x) = 0. Hence, φe,u(x,Ψ

Fu
n,u(x)) ↓= 1. So

φe(x,Ψ
F
n (x)) = 1. Since ΨF

n is the least modulus of φe, we have lims φe(x, s) = 1 6= 0 =
F (x) and hence Re,n is satisfied.

Third, suppose Re,n receives attention at stages > t only once and let r + 1 be that
stage. We have φe,r(x,Ψ

Fr
n,r(x)) = Fr(x) = 0. Now, since Re,n does not receive attention

later on, we have Fv(x) = 1, for v ≥ r + 1 and hence F (x) = 1. Let u be the least
stage ≥ r + 1 such that: ΨFu

n,u(x) ↓, φe,u(x,ΨFu
n,u(x)) ↓ and Fu � ψFu

n,u(x) = F � ψFu
n,u(x)

which gives us ΨFu
n,u(x) = ΨF

n (x) and φe,u(x,Ψ
Fu
n,u(x)) = φe(x,Ψ

F
n (x)). Since Re,n does

not receive attention at stages > r + 1, we have either i) φe,u(x,Ψ
Fu
n,u(x)) 6= Fu(x) or

ii) ΨFu
n,u(x) < hu(e, n, x). Suppose i). Fu(x) = 1 so φe,u(x,Ψ

Fu
n,u(x)) = 0. It means that

φe(x,Ψ
F
n (x)) = 0. Since ΨF

n is the least modulus of φe, we have lims φe(x, s) = 0 6= 1 =
F (x) and thus Re,n is satisfied. Now, suppose ii). We have hu(e, n, x) = hr+1(e, n, x) =
ΨFr
n,r(x). So ΨF

n (x) < ΨFr
n,r(x). Since ΨF

n is the least modulus of φe and φe(x,Ψ
Fr
n,r(x)) = 0,

we have lims φe(x, s) = 0 6= 1 = F (x) and thus Re,n is satisfied.
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Lemma 4. f and g are least moduli for (Fs) and (Gs), respectively.

Proof. We show f is the least modulus of (Fs) (the case of g and (Gs) is symmetrical).
Recall that we start from f0(x) = F0(x) = 0 and observe that changes we made in our
construction to (fs) and (Fs) satisfy the following:

i) ft(x) 6= ft+1(x)⇒ ft+1(x) = t+ 1, and

ii) ft(x) 6= ft+1(x)⇔ Ft(x) 6= Ft+1(x).

From this, it follows easily that lims fs(x) = f(x) is precisely the first stage at which (Fs)
settles down for argument x.

Lemma 5. lims Fs = limsGs.

Proof. When (Fs) and (Gs) are modified in an attempt to satisfy some Re,n, both ap-
proximations change in the same way. However, if they are modified in an attempt to
satisfy Fe or Ge, we make them differ at one stage but we immediately define a pending
action which is handled at the next stage at which we undo the last change.

5 Conclusions

Least moduli of a given set provide another way of examining c.e. degrees lying in its
upper cone. And vice versa: results concerning structural properties of c.e. degrees above
a given set are informative for detecting the behaviour of its least moduli. For example,
we have observed that the non-density theorem for the 2-c.e. degrees implies that all least
moduli of the 2-c.e. degree < 0′ constructed in the theorem are to be found in 0′. We
have also shown how one may exploit the properties of least moduli to carry out the
construction of a non-c.e. degree, which is somewhat different from Cooper’s technique
[6]. There are further questions which may be of some interest in view of Theorem 4. For
example, we have not established whether the non-c.e. degree constructed in Theorem 5
is low or whether the join of its moduli is 0′. Nevertheless, it seems likely that the answers
are positive.
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